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Abstract—In this article, we investigate the pursuit-evasion
game of multiple autonomous underwater vehicles (AUVs) in a
complex ocean environment. The pursuer AUVs need to optimize
their trajectories to avoid obstacles and dangerous vortex regions
in the environment in order to pursue the escaper AUV. Both the
pursuer and escaper can sense each other with limited detection
capabilities for further pursuit or escape. As the underwater
pursuit-evasion (UPE) game is a high-dimensional NP-hard
problem, we innovatively transform it into a finite-horizon
Markov game process and propose a decentralized training and
decentralized execution efficient training framework based on
the offline reinforcement learning. During the training process,
we propose multiagent independent soft actor–critic to facilitate
policy improvement and generate the offline data set, and
propose multiagent independent decision transformer for model
training in the UPE game. Extensive simulations demonstrate
the scalability and generalization ability of our proposed training
framework, which can achieve excellent performance in the UPE
games under different conditions and environments with only a
few AUVs participating in policy improvement to generate the
high-quality offline data set.
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I. INTRODUCTION

DUE TO its strong mobility, wide range of activities,
and strong concealment, autonomous underwater vehi-

cles (AUVs) have been widely used in typical Internet of
Underwater Things (IoUT) tasks, such as resource survey [1],
information collection [2], [3], real-time search and rescue [4],
and underwater target search is the key to efficient implemen-
tation of these tasks. Considering the high maneuverability
and unknown escape strategy of the target and the limited
perception ability of AUV, it is urgent to study the underwater
pursuit-evasion (UPE) game between the multiple AUV and
the escape target [5]. In addition, the complex and unknown
underwater environment makes the decision-making process
of this game full of challenges.

The multiagent pursuit-evasion game requires pursuers and
escapers to continuously adjust their behaviors and policies
according to their own observable environmental information,
simultaneously or successively, in order to maximize their own
interests and finally pursue the escaping target successfully. In
the process, the target is highly maneuvering, with unknown
motion state and certain escape policy [4]. There is a special
imbalance in the research of the multiagent pursuit-evasion
game, which mainly focuses on the unmanned aerial vehicles
and unmanned ground vehicles. The research of the UPE game
is still in the initial stage due to the complex underwater
environment and the difficulty in describing the underwater
dynamic game process. Most UPE game decision schemes are
derived from the migration of space-based and roadbed robots.
Mainstream pursuit-evasion methods include the heuristic
algorithms [6], the neural network [7], the game theory [8],
etc. Although they have achieved good results in specific tasks,
such model-based methods require a large amount of prior
information, and the control parameters need to be constantly
adjusted according to the changes of the environment, and
consequently the performance of the methods deteriorates
significantly. Due to their limited scalability and adaptability,
they are not suitable for highly dynamic multiagent UPE game
tasks.
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Thanks to the excellent feature expression ability and
interactive feedback ability with the environment, deep rein-
forcement learning (DRL) has become a feasible solution to
the UPE games of various multiagent unmanned systems.
In the literature, Zhang et al. [9] extended the multiagent
deep deterministic policy gradient (MADDPG) algorithm to
build an efficient target prediction network and studied the
pursuit-evasion game of multiquadcopter in the environment
of obstacles. Wang et al. proposed a scalable DRL method
scalable-MADDPG for cooperative target invasion in the
multiple unmanned surface vehicles (USVs) system. This
method can change the scale of the multi-USV system at
any time to help the multi-USV system adapt to the com-
plex marine environment [10]. Wei et al. [4] proposed a
differential game-based DRL method to study the differential
game problem of underwater target hunting. Unfortunately,
the traditional DRL methods are not suitable for the dynamic
and unstable multiagent UPE game environments, which can
be effectively mitigated by using multiagent reinforcement
learning (MARL), but the existing MARL methods are often
based on the centralized training and decentralized execution
(CTDE), which makes the algorithm less scalable [11]. In
addition, due to the complexity of the task and the lack of
prior information, agents need to interact frequently with the
environment to collect a large amount of data, which requires
a lot of time and computing resources [12]. Therefore, it
is very important to improve the sampling rate of RL. The
emergence of offline reinforcement learning (ORL) effectively
solves this problem, which uses the preexisting offline data set
for training, and improves the training efficiency while saving
computing resources and time [13]. However, there are three
shortcomings (bootstrap, off-policy, and approximation) in tra-
ditional ORL due to the introduction of time difference (TD),
which affect the stability and performance of training [14].

Based on the above analysis, it can be seen that the
existing UPE game works do not carefully consider the
impact of complex ocean environment on AUV movement,
and the hypothesis of game confrontation between the pur-
suers and escapers is relatively ideal. At the same time,
the existing training strategies have some problems, such
as inapplicability to dynamic multiagent environment, poor
scalability, low sampling efficiency, unstable training, and
unsatisfactory performance. Therefore, this work analyses the
environment of the UPE game, and proposes an efficient
training framework, named multiagent independent soft actor–
critic (MAISAC) and the multiagent independent decision
transformer (MAIDT)-based ORL training strategy (MMOTS).
The main contributions are as follows.

1) To the best of our knowledge, this is the first work
that investigates the multi-AUV UPE game in complex
environments with obstacles and ocean currents, aiming
to plan AUV’s trajectory to safely and reliably pursue
targets. Considering that the trajectory optimization is a
high-dimensional NP-hard problem, we define the multi-
AUV UPE game as a the finite-horizon Markov game
process (FMGP) to solve it.

2) We propose an efficient training framework MMOTS
based on the decentralized training and decentralized

execution (DTDE), in which proposed MAISAC is first
used to realize policy improvement and make the offline
data set, and then ORL is used to train the model and
apply it to the multi-AUV UPE game. To overcome
the training instability and low efficiency of ORL,
we introduce decision transformer (DT) into ORL and
extend it to MAIDT.

3) Extensive experiments demonstrate the superiority and
adaptability of our proposed MMOTS, allowing it to
accommodate UPE games under various conditions
and environments. Compared to the other state of the
art algorithms, MAISAC exhibits significantly higher
training efficiency, while MAIDT shows enhanced gen-
eralization capability and stability.

The remainder of this article is organized as follows. In
Sections II and III, the related work and system model are
given in detail. The constrained optimization problem and
algorithm design are then introduced in detail in Sections IV
and V, respectively. In Section VI, the numerical simulation
experiments are carried out to verify the effectiveness of
MMOTS, followed by the conclusion in Section VII.

II. RELATED WORK

The study of the UPE game is of great significance to under-
water detection, underwater precision guidance, underwater
target tracking, and other application fields [1], [2]. AUV is
used to search and capture targets because of its intelligence,
flexibility, and controllability [15]. In [16], [17], and [18],
researchers use sensors, such as multibeam forward-looking
sonar and underwater cameras mounted on the AUV to deter-
mine the location of the target and predict its trajectory based
on this, and then dispatch the AUV to keep track of the target.
However, this target tracking method that relies on the sensing
ability of the AUV, has a low success rate due to the unknown
escape strategy of the target and the limited detection range
due to the harsh underwater environment [19]. Therefore, the
focus of current research is to track or hunt targets by means of
multi-AUV coordination to make up for the defects of limited
AUV sensing range and low search efficiency. For example,
Zhao et al. [20] proposed a minimum rigid graph-based
tracking strategy based on collaboration between the AUVs to
improve target tracking accuracy. Zhang et al. [8] proposed
a contract network-based allocation framework to achieve
multi-AUV formation target hunting. Unfortunately, the highly
dynamic and complex underwater game environment presents
a challenge to the multi-AUV system control methods [21].

Presently, the common methods of multi-AUV pursuit-
evasion game mainly include neural networks [5], control
models [22], game theory [23], etc. In [24], topologically
organized biological neural networks based on the grid dia-
grams are used to characterize dynamic game environments,
guiding AUVs to search for the targets and avoid obstacles
in a 3-D underwater environment. In [6], particle swarm
optimization algorithm is applied to real-time rescue assign-
ment of multi-AUV systems. In [5], fractional order recurrent
neural network (RNN) is constructed to optimize anti-game
maneuvering strategies based on the Karush–Kuhn–Tucker
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Fig. 1. Illustration of the IoUT-assisted UPE game scenario.

(KKT) optimality conditions for the anti-game problems in
dynamic target scenarios. In [25] and [26], based on the
game theory, the interactive process between the multi-AUV
systems and targets was analysed and hunting strategies were
derived. However, in practical applications, the above model-
based multi-AUV control strategies require a large amount
of prior environmental information, and need to adjust the
control parameters in real time according to the changes in
the environment, which is not suitable for the highly dynamic
underwater game environment.

The multi-AUV control strategy based on the MARL has
excellent performance in the UPE game. Wei et al. [27]
proposed a MARL strategy for multi-AUV underwater target
hunting task based on differential game. Xia et al. [28]
proposed an end-to-end MARL scheme for multiagent target
tracking, which improved the success rate of target tracking.
However, the above MARL-based solutions have the problems
of unstable training and low sampling efficiency, so they
cannot train an efficient hunting model. This kind of solution
does not have scalability because it uses the CTDE framework.
On the other hand, the game scenarios considered by the above
schemes are relatively simple and ideal, and does not take into
account complex ocean environment and the escape strategy
of the target, which lacks practicability.

To sum up, different from the previous work, we study
the multi-AUV UPE game scenario, not only considering the
interference of obstacles and vortexes on AUV movement but
also considering the escape strategy of the target, and propose
an innovative ORL-based training framework named MMOTS,
which adopts the DTDE mode with strong applicability and
scalability.

III. SYSTEM MODEL

We consider the IoUT-assisted UPE game scenario as shown
in Fig. 1, which includes an IoUT network composed of buoys
on the sea surface and sensor nodes laid on the seabed, and N
AUVs participating in the UPE game. The buoys can commu-
nicate with the shore-based stations or satellites through the

electromagnetic signals to obtain their location and time [20],
while the sensor nodes utilize acoustic communication to
directly interact with the buoys for self-localization and clock
synchronization [29]. The set of AUVs is defined as N=
{1, 2, . . . , N}(N > 1), where the type of the first N-1 AUVs
is the pursuer AUV (PAUV), and the Nth AUV is identified
as the escape AUV (EAUV). PAUVs and EAUV perform the
UPE game on the study plane with a fixed depth h, the position
of PAUV i at time t can be denoted as Pi(t) = [xi(t), yi(t), h]T ,
and the position of EAUV can be denoted as PT(t) =
[xT(t), yT(t), h]T . During the whole game process, the motion
state of the EAUV is unpredictable, yet its position can be
captured by the sensor nodes or buoys and reported to PAUVs
via the acoustic communication methods [8]. In addition, there
are obstacles and vortexes in the environment, and PAUVs and
EAUV need to avoid these hazards as much as possible. Each
AUV is equipped with the sonar for underwater detection and
a horizontal acoustic Doppler current profiler (HADCP) [30]
for current velocity measurement, which manufacturers an
accuracy of 1% of measured velocity ±5 mm/s and can be
used to measure water velocity on a horizontal line hundreds
of meters ahead [31]. With the HADCP, AUVs can sense
the location of surrounding vortex centers and avoid them
through the trajectory scheduling. The AUV dynamics model,
underwater detection model, and ocean current model are
given in detail in Sections III-A–III-C, respectively.

A. AUV Dynamics Model

Since, PAUVs pursue the EAUV in the horizontal plane,
without the loss of generality, their dynamic models can
be expressed by the three-degree of freedom underdrive
model, in which AUV i has the body reference frame vi =
[vi,x(t), vi,y(t), ωi]T , and the world reference frame ηi =
[xi(t), yi(t), θi]T , where vi,x(t), vi,y(t), ωi and θi are the surge
velocity, sway velocity, yaw angular velocity, and yaw angle,
respectively. According to the Fossen’s motion equation [27],
the dynamic model of AUV i considering hydrodynamics and
hydrostatic forces is

η̇i = J
(
ηi
)
vi (1)

MU v̇i + CU(vi)vi + DU(vi)vi + GU
(
ηi
) = τ i (2)

where MU represents the inertia matrix, including the addi-
tional mass of AUV, while CU is the Coriois centripetal
force matrix of AUV. Moreover, DU is the damping matrix
describing the viscous fluid force and GU is the composite
matrix of gravity and buoyancy. τ i denotes the control input
of AUV i. We define J(ηi) as the transformation matrix, and
we have

J
(
ηi
) =

⎡

⎣
cos θi − sin θi 0
sin θi cos θi 0

0 0 1

⎤

⎦. (3)

For practical applications, the above kinematic and dynamic
equations need to be separated at any time

ηt+1 = ηt +�T · J(ηt
)
vt (4)

vt+1 = vt +�T ·M−1
U F

(
ηt, vt

)
(5)
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where �T is the time interval and F(ηt, vt) can be given by
F(ηt, vt) = τ t − CU(vt)vt − DU(vt)vt − GU(ηt).

B. Underwater Detection Model

AUVs use the sonar to detect the environment in a limited
range, such as detecting surrounding obstacles and keeping
track of the target. This process can be uniformly modeled
using the active sonar equation [32] as

EM = SL− 2TL(f , d)+ TS− NL(f )+ DI − DT. (6)

The unit of all the parameters in (6) is dB, where SL,
TL, TS, NL, and DI represent the emission sound strength,
transmission loss, target strength related to the target reflec-
tion area, environmental noise level, and directionality index,
respectively. Furthermore, DT and EM represent the detec-
tion threshold and echo margin of active sonar, respectively.
Furthermore, TL is related to the detection radius d and the
center acoustic frequency f , namely

TL = 20 log(d)+ d × a(f )× 10−3 (7a)

a(f ) = 0.11
f 2

1+ f 2
+ 44

f 2

4100+ f 2
+ 2.75× 10−4f 2 + 0.003

(7b)

where a(f ) is the attenuation coefficient of sound wave in
water. Environmental noise NL composed of turbulence noise
Nt, shipping noise Ns, wind noise Nw, thermal noise Nth, and
the environmental noise [33] can be represented as

NL(f ) = Nt(f )+ Ns(f )+ Nw(f )+ Nth(f ). (8)

The noise components in (8) are
⎧
⎪⎪⎨

⎪⎪⎩

10 log Nt(f ) = 17− 30 log f
10 log Ns(f ) = 30+ 20s+ log

(
f 26/(f + 0.03)60

)

10 log Nw(f ) = 50+ 7.5ω1/2 + 20 log
(
f /(f + 0.4)2

)

10 log Nth(f ) = −15+ 20 log f

(9)

where s and w represent the shipping activity factor and wind
speed (m/s), respectively, s ∈ [0, 1]. Since, EM and d show a
monotonically decreasing relationship, when the frequency f
is given, the maximum detection radius rc of the AUV is

rc = arg max
d
{EM(d) ≥ 0}. (10)

C. Ocean Current Model

The motion of AUV in the UPE game needs to take into
account the influence of ocean turbulent environment because
the intensity of ocean current on the horizontal plane is much
greater than that on the vertical plane under the influence of the
Earth rotation, the ocean flow can be approximately 2-D [34].
We refer to the work in [30] to use 2-D Navier–Stokes
equations [32] to model the ocean turbulent environment as

∂�

∂t
+ (Vc∇)� = ζ�� (11)

where Vc = (Vx, Vy) is the velocity of the current field,
� and ζ are the vorticity of the current and the viscosity
of the fluid, and ∇ and � are the gradient operators and

the Laplacian operators, respectively. To simplify the Navier–
Stokes equation, the numerical equation of the ocean current
model is represented by the superposition of several viscous
vortex functions, which are described as follows:

Vx(Pi(t)) = −� · y− y0

2π‖Pi(t)− P0‖22
·
(

1− e
−‖Pi(t)−P0‖22

δ2

)

(12a)

Vy(Pi(t)) = −� · x− x0

2π‖Pi(t)− P0‖22
·
(

1− e
−‖Pi(t)−P0‖22

δ2

)

(12b)

�(Pi(t)) = �

πδ2
· e−
‖Pi(t)−P0‖22

δ2 (13)

where Pi(t) and P0 are the current position of the AUV i and
the coordinate vector of the Lamb vortex center, Vx(Pi(t)) and
Vy(Pi(t)) are the velocities of the ocean current on the X and
Y axis perceived by AUV i at the position Pi(t) at time t,
respectively. While δ and � are the radius and intensity of the
vortex, respectively.

IV. PROBLEM FORMULATION

In this section, we first model the UPE game between the
PAUVs and the EAUV as an FMGP. Then, the constrained
optimization problem is presented and the reward function is
designed in detail.

A. Finite-Horizon Markov Game Process Modeling

In the UPE game, the goal is to train PAUVs to navigate
in an underwater environment with currents and obstacles to
find and then pursue the EAUV. The game belongs to the
multiagent task category, considering the interaction between
the multiagent system and the underwater environment, this
game can be modeled as an FMGP, and the process has a
termination state, allowing AUVs to end the current event.
Similar to the Markov decision process [28], FMGP’s main
elements include the state space Si, action space Ai, and
reward function Ri.

1) State Space Si: In FMGP, the states of each AUV are
observable, and the ith AUV’s state si(t) of belongs to the state
space Si, which can be expressed as

si(t) =
[
li(t), l(p−e)i(t), min(li(t)), Vx(Pi(t)), Vy(Pi(t))

αoi(t), α(p−e)i(t), Di(t)
]

(14)

where li(t) denotes the ambient distance detected by the sonar,
while l(p−e)i(t) represents the distance between the AUV i and
the EAUV if the AUV i is a PAUV, or the distance between
the nearest PAUV and the EAUV if the AUV i is an EAUV.
Then, αoi(t) and α(p−e)i(t) are the orientation angle of AUV i,
and the yaw angle from the PAUV i to the EAUV or the yaw
angle from the EAUV to the nearest PAUV, respectively. While
the termination state is represented by Di(t) ∈ {True, False},
indicating whether the episode has concluded or not.

Authorized licensed use limited to: Zhejiang University. Downloaded on October 01,2024 at 09:11:10 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: MULTI-AUV PURSUIT-EVASION GAME IN THE INTERNET OF UNDERWATER THINGS 31277

2) Action Space Ai: In FMGP, at each step, the AUV
i needs to determine its next action based on the feedback
from the environment. According to the AUV dynamics model
in the previous section, the action space Ai and action ai(t)
of the AUV i can be expressed as

Ai = [vmin, vmax]× [ωmin, ωmax] (15)

ai(t) = [vi(t), ωi(t)] (16)

where ‖vi(t)‖ =
√

vi,x(t)2 + vi,y(t)2 ∈ [vmin, vmax] and
‖ωi(t)‖ ∈ [ωmin, ωmax]. The actions chosen by the ith AUV
interact with the environment to produce the next state accord-
ing to the state transition function, and si(t)×a1i×a2i×· · ·×
aNi �−→ si(t+ 1) denotes the transition from the state si(t) to
the next state si(t + 1).

3) Reward Function Ri: The agent adjusts its policy
according to the reward obtained by the current action, and
so it is crucial to design an appropriate reward function. The
design of the reward function need to take the engineering
practice and the complexity of the UPE game into account,
and the specific design is given in the following section.

B. Problem Formulation

In this section, we summarize several engineering con-
straints to be considered in the UPE game, and formulate a
constrained optimization problem, whose goal is to optimize
the policy of each AUV (πθi) to maximize the total
expected reward. The constrained optimization problem can
be expressed as

max
πθi

J(θi) = max
πθi

E

[
T=∞∑

t′=t

γ t′−tRi,t′
(
si, πθi(ai | si)

)
]

(17a)

s.t. lij(t) ≥ li↔j
min, liT(t) ≥ li↔T

min ∀i, j ∈ N , i 
= j (17b)

vmin ≤ ‖vi(t)‖ ≤ vmax, ωmin ≤ ‖ωi(t)‖ ≤ ωmax ∀i ∈ N
(17c)

where γ ∈ (0, 1] represents the discount factor, while πθi(ai |
si) denotes the policy, indicating the probability of choosing
action ai in the state si for AUV i, and θi is the parameters
of the policy. Equation (17b) considers collision avoidance
between the PAUVs and between each PAUV and EAUV.
Considering the size and structure limitations in practice, (17c)
restricts the velocity and angular velocity range of each AUV.
In addition, based on the assistance of the underwater sensor
network, PAUVs have better pursuit ability.

C. Reward Function Design

The design of the reward function needs to consider obsta-
cle avoidance, encouraging PAUVs to approach the EAUV,
encouraging the EAUV to escape and approach the target
point, and guiding each AUV to avoid dangerous areas near
the vortex centers. Therefore, we outline them as follows.

Collision Avoidance: To ensure the safety of PAUVs pursu-
ing the EAUV, and the policy for the EAUV to escape when
PAUVs approach the EAUV, it is essential to set a minimum
distance between the AUVs as well as between the AUVs
and obstacles. Imperatively, we set li↔j

min as the safe distance

imperative to prevent collisions. Based on the above analysis,
the reward function rCi(t) is designed as

rCi(t) = −400 ceil
(

li↔j
min/ min(li(t))

)
i = 1, . . . , N (18)

where ceil(x) is the binary function, which means that the
ceil(x) equals to 1 when x ≥ 1, and equals to 0 when x ≤ 1.
More intuitively, (18) denotes that when the nearest distance
is less than or equal to li↔j

min, the AUV will receive a penalty
of 400.

Encourage Pursuit/Evasion: Drawing on the insight that
the PAUVs should be guided away from aimlessly wandering
during exploration and interaction within the environment,
we leverage rE1i

to incentivize each PAUV to actively move
toward the EAUV, and encourage the EAUV to get to the target
point

rE1i
(t) =

{
0.25, li↔T(t − 1) > li↔T(t)
−0.25, li↔T(t − 1) < li↔T(t), i = 1, . . . , N.

(19)

Meanwhile, in order to maintain the consistent performance
of each AUV during the entire process, we define li↔T

max as the
target distance and provide rewards based on the results of
each AUV

rE2i
(t) = 900 ceil

(
li↔T
max /li↔T(t)

)
i = 1, . . . , N (20)

where li↔T is the distance between the AUV i and the EAUV
for PAUVs, while the distance between the EAUV and the
target point for the EAUV.

Vortex Avoidance: Owing to the presence of vortexes, the
current velocity increases as the AUV gets closer to the vortex
center. This can lead to deviations from the preplanned route
and direction, subsequently impacting the AUV’s decision
making ability. Fortunately, the AUV is equipped with HADCP
to measure the current velocity at its position. Therefore, it is
crucial to apply penalties to the AUV based on the measured
current velocity

rTi(t) = −400 ceil
(
‖Vc(Pi(t))‖/Vi↔C

max

)
i = 1, . . . N (21)

where Vi↔C
max denotes the safe current velocity to help

AUVs avoid vortex centers, while ‖Vc(Pi(t))‖ =√
Vx(Pi(t))2 + Vy(Pi(t))2 represents the value of the current

velocity.
To summarize, the total reward Ri(t) can be represented as

follows:

Ri(t) = δCrCi(t)+ δE1 rE1i(t)+ δE2 rE2i(t)+ δTrTi(t) (22)

where δC, δE1 , δE2 , and δT represent the weight coefficients
associated with the respective reward functions rCi(t), rE1i

(t),
rE2i(t), and rTi(t).

V. ALGORITHM DESIGN

In this section, we first introduce the MMOTS framework
for the UPE game, which consists of two main stages: 1)
policy improvement and 2) model training. Then, we introduce
MAISAC and the MAIDT algorithm utilized in MMOTS in
detail.
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Fig. 2. Framework of MMOTS, which consists of two main stages, policy improvement and model training. In the first stage, we propose and utilize the
MAISAC algorithm to train the AUVs for policy improvement, aiming to obtain the expert policy, which is then utilized for data collection to generate an
offline data set. Subsequently, in the second stage, MAIDT algorithm in the ORL is utilized for each AUV to learn from the existing offline data set through
the model training. Finally, the trained model will be employed in each AUV for the UPE game.

A. Framework of MMOTS for UPE Game

Due to its inability to adapt to the highly dynamic UPE
game environment, traditional RL has shortcomings, such as
low training efficiency, poor scalability, and complex calcu-
lation when solving the constrained optimization problem in
the previous section. Therefore, we propose MMOTS, the
framework is shown in Fig. 2. First, DTDE is used to extend
SAC algorithm to MAISAC for parallel and independent
training of AUVs, so that they can perform their own tasks
in unknown dynamic environment because the SAC algorithm
lacks asymptotic convergence guarantee, the further policy
improvement is necessary. We designate the optimal policy
solved by (17a) as the expert policy, and all the trajectories
under the expert policy are saved as the offline data set, defined
as τi

τi =
(
s1i ,a1i , r1i , s2i , s2i ,a2i, r2i s3i . . . , sTi ,aTi , rTi , sT+1i

)
.

(23)

Then, the MAIDT model is trained based on the obtained
offline data set to achieve policy improvement for each AUV
in the UPE game. The trained MAIDT model can be used to
predict the real-time action of each AUV based on the initial
state and expected total reward. The optimal policy of MAIDT
can be obtained according to (24) as

max
πθ ′i

J′
(
θ ′i
) = max

πθ ′i
E

[
T=∞∑

t=1

rti

]

(24)

where πθ ′i denotes policy of AUV i and θ ′i denotes the
parameters of the policy, which depends on the model training
via MAIDT.

B. Multiagent Independent Soft Actor-Critic

Inspired by SAC [35], MAISAC involves modeling two
action value functions Q1i and Q2i , along with a policy
function πθi for each AUV. To address the issue of the Q value
overestimation, we utilize two critic networks �1i and �2i ,
as well as their respective target networks, �−1i

and �−2i
. The

selection of the network with a smaller Q value mitigates the
overestimation problem. Consequently, the loss function of Q
can be formulated as

LQ1i

(
�1i

) = E(st,at,rt,st+1)∼Di

[

1/2
(

Q�1i
(st,at)

−
(

rt + γ V�−1i
(st+1)

))2
]

(25)

LQ2i

(
�2i

) = E(st,at,rt,st+1)∼Di

[

1/2
(

Q�2i
(st,at)

−
(

rt + γ V�−2i
(st+1)

))2
]

(26)

where Di denotes the replay buffer to store the collected data,
while V�−1i

(st) and V�−2i
(st) represent the state value function

with the parameters �−1i
and �−2i

, respectively. To prevent the
AUV i from getting stuck in the local optimal policy, we
introduce the entropy regularization and express V�−1i

(st+1)

and V�−2i
(st+1) as follows:

V�−1i
(st+1) = min

j=1,2
Q�−ji

(st+1,at+1)− αi log πθi(at+1 | st+1)

(27)

V�−2i
(st+1) = min

j=1,2
Q�−ji

(st+1,at+1)− αi log πθi(at+1 | st+1)

(28)

where αi stands for the regularization coefficient, determining
the weight placed on the entropy in the policy. Subsequently,
the policy’s loss function can be derived from the simplified
KL divergence

Lπθi
(θi) = Est∼Di,at∼πθi

[
αi log

(
πθi (at | st)

)− min
j=1,2

Qθji
(st,at)

]
. (29)

To address the issue of nondifferentiability when sampling
actions from the Gaussian distribution n, the reparameteriza-
tion trick is introduced, allowing the policy function to be
expressed as at = fθi(εt; st), where εt represents a noise
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random variable. By considering two action value functions
simultaneously, the policy’s loss function can be reformulated
as follows:

Lπθi
(θi) = Est∼Di,εt∼n

[
αi log

(
πθi

(
fθi(εt; st) | st

))

− min
j=1,2

Q�ji

(
st, fθi(εt; st)

)]
. (30)

To automatically adjust the entropy regularization term, the
goal of RL can be reformulated as a constrained optimization
problem

max
πθi

Eπθi

[
∑

t

rti

]

s.t. Est∼Di,at∼πθi

[− log
(
πθi(at | st)

)] ≥ H0.

(31)

More intuitively, the objective is to maximize the expected
total reward while ensuring that the entropy mean exceeds H0.
By simplifying (31), we can derive the loss function for αi as

L(αi) = Est∼Di,at∼πθi

[−αi log πθi(at | st)− αiH0
]
. (32)

Equations (31) and (32) imply that if the policy entropy
is below the desired value H0, the training target L(αi)

will raise the value of αi. Consequently, it will amplify the
significance of the corresponding term in the policy entropy
during the process of minimizing the loss function Lπθi

(θi).
Conversely, if the policy entropy exceeds H0, L(αi) will lower
αi, thereby directing the policy training toward prioritizing
value improvement.

C. Multiagent Independent Decision Transformer

The traditional training mode based on the TD algorithm is
faced with challenges, such as low efficiency and especially
overestimation. The primary reason for overestimation stems
from the tendency to maximize the Q value, which becomes
more pronounced when the action space expands.

Theorem 1: Maximization leads to overstimation.
Proof: See Appendix A.

Theorem 2: Assume that there is no difference in the
expected return of all the actions in the state s, i.e., Q∗(s,a) =
V∗(s), It is also assumed that the neural network estimation
error Qω−(s,a)−V∗ obeys the uniform independent distribu-
tion of [−1, 1]. Suppose the size of the action space is n, then
for any state s

E

[
max
a

Qω−(s,a)−max
a′

Q∗
(
s,a′

)] = n− 1

n+ 1
(33)

that is, the larger the action space is, the more seriously the
Q value is overestimated.

Proof: See Appendix B.
To avoid overestimation caused by the TD algorithm, we

refer to the utilization of DT to convert the offline RL problem
into the seq2seq problem, and we extend DT to MAIDT to
make simultaneous training of multi-AUV possible. MAIDT is
a DT-based framework that incorporates the insights from [36]
on the transformer structure. Transformers have multiple
self-attention layers with residual connections, as in [36].
Each layer represents input tokens as embeddings ({xi}ni=1)

and outputs embeddings ({zi}ni=1), maintaining the original

Algorithm 1 MMOTS Framework
1: Initialize the training environment, including the replay

buffer Di, critic network and corresponding target
network, policy network parameters, and entropy regular-
ization �1i , �2i , �̄1i , �̄2i , φi, αi of AUV i.

2: for each episode k do
3: Reset the training environment and total reward.
4: for each time step t do
5: Sample an action according to the policy:
6: ati ∼ πθi

(
ati | sti

)
;

7: Collect the next state from environment:
8: st+1i ∼ P(

st+1i | sti ,ati

)
;

9: Calculate reward rti by (18) ∼ (22);
10: Store sampling tuple

(
sti ,ati , rti , st+1i

)
into Di.

11: Extract N batches tuple of data from Di.
12: �ji ← �ji − λ�ji

∇�ji
J�ji

(
�ji

)
, j = 1, 2.

13: θi ← θi − λθi∇θi Jθi(θi).
14: αi ← αi − λαi∇αi Jαi(αi).
15: �̄ji ← κ�ji + (1− κ)�̄ji, j = 1, 2
16: end for
17: end for
18: Collect trajectories using expert policy obtained by (31).
19: Modify the trajectories and generate offline data sets τ ′i

by (35).
20: Sample n batches of sequence length K from the offline

data set τ ′i by (36).
21: for each gradient step j do
22: Update the models of MAIDT using Adam through

updating on θ ′i via LMSE
(
θ ′i
)

by (37).
23: end for

dimensions. This is achieved by mapping tokens to the key
(ki), query (qi), and value (vi) through linear transformations.
The self-attention layer calculates the output for each token by
weighting values based on the dot product between the query
and key. This mechanism establishes associations between the
states and returns by assigning “credit” based on the similarity

zi =
n∑

j=1

softmax
({

< qi, kj′ >
}n

j′=1

)

j
· vj. (34)

Then, the offline data set obtained by (23) is utilized to
train the model via MAIDT for each AUV in the UPE game.
Moreover, to accurately predict action âi(t) during the UPE
game, the MAIDT model requires modeling the reward and
reshaping the trajectory in the offline data set to align with
the autoregressive training and action prediction [36]. This
modified trajectory is denoted as τ ′i

τ ′i =
(
r̂1i , s1i ,a1i , r̂2i , s2i ,a2i , . . . , r̂Ti , sTi ,aTi

)
(35)

where r̂ti =
∑T

t′=t rt′i denotes the expected total reward of
AUV i.

During the model training, n batches of sequences (τs) with
the length K are randomly selected from the offline data set

τsj =
(
r̂1j, s1j ,a1j , r̂2j , s2j ,a2j , . . . , r̂Kj , sKj ,aKj

)

(j = 1, 2, . . . , n). (36)
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The training objective of the prediction head for the input
token si(t) is to minimize the mean-squared error LMSE for the
actions aiming to predict action âi(t) for AUV i. The error for
each timestep is averaged, as illustrated in

max
πθ ′i

J′
(
θ ′i
) = min

πθ ′i
LMSE

(
θ ′i
) = min

πθ ′i

⎡

⎣− 1

N

N∑

j=1

(
aj − âj

)2

⎤

⎦.

(37)

VI. SIMULATION RESULT AND DISCUSSION

In this section, we aim to validate the proposed MMOTS
through a two-stage simulation of training multi-AUV for
the UPE game. First we present the experiment’s settings,
followed by a detailed description of the entire process.
Subsequently, we analyze and discuss the results of the
experiments, focusing on the performance of MMOTS.

A. Experiment Settings

During the simulation, we employ two distinct sets of
parameters: 1) the simulation environment and 2) algorithm
parameters. These sets of parameters are considered compre-
hensively to ensure an effective evaluation.

1) Simulation Environment Parameters: The simulation is
carried out on a 400 m × 400 m area with a water depth
of −200 m, on which obstacles and vortices are randomly
distributed. At the beginning, the positions of the AUVs are
randomly distributed. The AUVs know their positions and can
obtain the surrounding current velocity through the equipped
HADCP. The area boundaries act as obstacles to restrict
the AUVs in the specified area. Considering the engineering
practice, the speed parameters of AUVs are ‖vi(t)‖ ∈ [0.0, 3.0]
m/s and ‖ωi(t)‖ ∈ [0.0, 2.0] rad/s. In addition, the AUVs’
quantity, and the spatial distribution of vortex centers and
obstacles will change according to the two different stages of
MMOTS.

2) Algorithm Parameters: The implementation of MMOTS
incorporates various parameters and settings. In the first
stage, MAISAC is employed to optimize the policy and critic
networks. The learning rate λ for these networks is set to 3 ×
10−4, while the discount factor γ is assigned a value of 0.99.
To facilitate network updates, a soft update coefficient κ of
0.01 is utilized, while the regularization coefficient of entropy
α is initialized to 0.2. For efficient training, a replay buffer
size C of 5 × 105 is employed, and the batch size for network
parameters updating is set to 256. During each episode, a
maximum of 6000 steps T are allowed, with a simulation
time step �t of 0.25 s. The training process comprises a total
of 140 episodes ε, and in terms of network architecture, a
hidden layer size of 256 is utilized. Moving on to the second
stage of MMOTS, MAIDT is employed and the parameters
are mainly referred to DT [36]. However, certain modifications
are made, such as setting the expected total reward to 18 817
and adjusting the number of steps per iteration to 5000. The
parameters mentioned above are detailed in Table I for a
summary.

TABLE I
PARAMETERS OF SIMULATION EXPERIMENT

B. Process of Experiment and Results Analysis

According to the training process of MMOTS, MAISAC
is first used for policy improvement to select the optimal
policy for the offline data set generation. In order to reduce
training difficulty and improve efficiency, the simulation setup
is simplified to two PAUVs pursuing two EAUVs navigating
at low velocity, respectively, with two obstacles and vortexes
in the environment. When the distance between the PAUV and
the corresponding EAUV is less than li↔e

max, the pursuit is con-
sidered successful, and the EAUV’s position will be randomly
reset, which prompts the PAUV to continue the pursuit, and
each AUV can get the reward in real time in the process. When
the maximum number of steps (6000) is reached, or the AUVs
encounter obstacles and travel near the center of the vortex,
the episode terminates and the indicator variable Di(t) is set
to True, which triggers an environmental reset for the next
episode. Then, we compare the proposed MAISAC with the
independent proximal policy optimization (IPPO) algorithm,
and repeat the experiment three times with different random
seeds to mitigate experimental contingency. Subsequently, the
comparative analysis are undertaken to investigate how the
varying maximum velocity (Vmax) influences the training
dynamics. Finally, the outcomes of these investigations are
depicted in Figs. 3 and 4, respectively.

Fig. 3 shows the smoothed average total reward curves
of the two AUVs using two different algorithms for policy
improvement. With the increase of training episodes, the
reward presents the gradual upward trend, and it is observed
that the reward curves of the MAISAC algorithm rises faster
than that of IPPO. In addition, after 140 training episodes,
the MAISAC curves reach a stable state, while the IPPO
curves have not converged. In addition, it can be seen from
Fig. 4 that as the maximum speed increases, the converged
value of the average total reward curves also increases. To be
intuitive, we also present the relationship between the average
total reward and Vmax ranging from 1.8 to 4.2 m/s in Fig. 5.
The curves in Fig. 5 demonstrate that as Vmax rises, the
average total rewards for both the PAUVs 1 and 2 show a
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Fig. 3. Smoothed average total reward curves of each PAUV relying on
MAISAC and IPPO for policy improvement.

Fig. 4. Smoothed average total reward curves of each PAUV relying on the
MAISAC algothrim for policy improvement with Vmax ranging from 1.8 to
3.0 m/s.

Fig. 5. Average total reward curves of each PAUV relying on the MAISAC
algothrim for policy improvement with Vmax ranging from 1.8 to 4.2 m/s.

progressive uplift. However, this upward trend diminishes over
time and eventually stabilizes. Preliminary analysis suggests
that since the action space encompasses both the velocity and
angular velocity, and the maximum angular velocity becomes
the primary factor that limits the PAUV’s mobility when the
velocity of each PAUV crosses a certain threshold. Therefore,
the average total rewards for PAUVs 1 and 2 begin to plateau
as Vmax increases.

Furthermore, we also investigate the influence of vary-
ing weight coefficients and safe distance on the MAISAC
algorithm performance. Specifically, we conduct ablation
experiments utilizing δC ranging from 0.25 to 2.50, δE1
ranging from 0.05 to 0.20, δE2 ranging from 0.5 to 2.0, and
safe distance ranging from 10 to 20 m, respectively, with
the results depicted in Fig. 6. Observations from Fig. 6(a)
demonstrate that as δC increases, the average total rewards
for PAUVs 1 and 2 initially rise before showing a decline.
A preliminary analysis suggests this phenomenon is due to
δC’s role in penalizing AUVs upon colliding obstacles. With a
minimal δC, the penalty is significantly less than the rewards
for successful pursuit, leading to insufficient deterrence. As a
result, each PAUV prioritizes tracking its target EAUV over
avoiding obstacles, making obstacle avoidance a secondary
concern, which leads to the frequent obstacle collision and
low average total reward. Conversely, when δC achieve a high
value, such as 2.5, the obstacle penalty of obstacle collision
greatly exceeds the rewards for successful pursuit making
the deterrence overly harsh. This situation causes PAUVs
to adopt a more conservative policy, reluctant to explore
the environment aggressively, which leads them to settle
for suboptimal solutions and thus the MAISAC algorithm
underperforms. Then, as shown in Fig. 6(b) and (c), with
the increase of δE1 and δE2, the average total reward of
PAUVs 1 and 2 gradually increases. Since, δE1 and δE2 are
both intended to award each PAUV to approach the target
EAUV, when δE1 is very small, the absolute value of reward
is much smaller than the reward or penalty obtained when
successfully pursuit or colliding obstacles, making the reward
obtained by PAUVs approximately sparse reward. As a result,
in the early stage of training via MAISAC, it is difficult
to obtain effective information from the replay buffer data
for training the policy and critic networks, so the training
and convergence speed is reduced, resulting in a low total
average reward and suboptimal policies. With the increase
of δE1, the value of reward also increases, and PAUVs may
gradually obtain effective information from the data collected
through each step, thus speeding up the training process.
However, the increase of the total average reward gradually
slows down, which may be attributed to the increase of δE1,
leading to the saturation of effective information obtained
from the ollected data. On the other hand, when δE2 is very
small, the absolute value of reward is much smaller than the
penalty obtained when colliding obstacles. As a result, each
PAUV prioritizes avoiding obstacles over tracking its target
EAUV, making target pursuit a secondary concern. Conversely,
when δE2 rises to 2.0, the corresponding reward value is
much smaller than the reward value obtained after successful
pursuit, resulting in PAUVs being more inclined to approach
the target EAUV, while ignoring obstacle avoidance, finally
resulting in the low total average reward and suboptimal
policies. Moreover, as can be seen from the Fig. 6(d), with the
increase of safe distance, the average total reward of both the
PAUV shows a trend of first increasing and then decreasing.
Upon analyzing the phenomenon, it can be indicated that when
the safe distance is too low, PAUV will take a shorter path to
complete the pursuit, but at the same time, it will also cause
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(a) (b) (c) (d)

Fig. 6. Average total reward curves of each PAUV relying on the MAISAC algorithm for policy improvement with varying reward weight coefficients and
safe distance, respectively. (a) δC varies from 0.25 to 2.5. (b) δE1 varies 0.05 to 0.2. (c) δE2 varies from 0.5 to 2. (d) Safe distance varies from 10 to 20 m.

Fig. 7. Trajectories of two PAUVs and two corresponding target EAUVs in
one successful pursuit, using MAISAC for policy improvement.

the short-sightedness of obstacle avoidance, which makes
the obstacle avoidance not timely enough, especially in the
dynamic environment, thus weakening the overall performance
of MAISAC to a certain extent. On the contrary, when the safe
distance gets too large, in order to avoid obstacles, PAUVs
will aggravate the distance from the obstacles, which also
weakens the performance of MAISAC. These results and
analysis highlight the superior training efficiency of MAISAC
and the significance of parameter settings for the first stage of
MMOTS, helping to reduce computational and time costs in
RL training.

In order to visualize the training process of MAISAC
more intuitively, we draw the trajectories of each AUV in
one successful pursuit as depicted in Fig. 7. As illustrated
in Fig. 7, each PAUV tracks its corresponding EAUV while
avoiding the obstacles and vortices, and finally complete a
successful pursuit, showcasing the effectiveness of the first
stage of MMOTS. While at episode 140 in the training process
of MAISAC, where the reward curves reach a plateau, the
AUVs’ policies are deemed to have reached expert level.
The policy corresponding to the highest total reward (18 817)

Fig. 8. Model loss curves of each AUV relying on the MAIDT algorithm
for training.

is selected to generate an offline data set. Leveraging the
collaboration of the multi-AUV within the UPE game, the
offline data set is subsequently employed to train the MAIDT
models, which encompasses the models of four PAUVs and
a single EAUV. This process yields training loss curves
as depicted in Fig. 8. The initial loss values of 0.7938,
0.8129, 0.8226, 0.8103, and 0.7822 are subsequently reduced
to 0.0747, 0.0778, 0.0769, 0.0767, and 0.0772, respectively,
indicating successful completion of the model training process.

For the remainder in the second stage of MMOTS, we
employ the trained MAIDT model for each AUV in the UPE
game. By inputting the highest expected total reward and the
initial state of each AUV into the model, it can accurately
predict the next action based on the current expected total
reward and state. The AUVs initiate navigation simultaneously
to fulfill their respective roles and travel around obstacles
and vortices. After conducting 1500 steps, we observe the
trajectories of each AUV in a successful pursuit episode,
depicted in Fig. 9.

Furthermore, we also conduct comparative experiments
to explore the impact of the offline data set quality and
environment complexity on the ultimate training results of
MMOTS, respectively. On the one hand, for the offline data set
quality, we utilize a suboptimal policy derived from employ-
ing MAISAC for policy improvement, and subsequently, the
MAIDT algorithm is employed to train the model, which is
then employed in each AUV. On the other hand, we improve
environment complexity by introducing more obstacles and
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Fig. 9. Trajectories of the UPE game with four PAUVs and one EAUV in
a successful pursuit episode in the simple environment, using the offline data
set with optimal quality for model training.

Fig. 10. Trajectories of the UPE game with four PAUVs and one EAUV in
a failed pursuit episode in the simple environment, using the offline data set
with suboptimal quality for model training.

vortices. The corresponding resulting trajectories in the UPE
game are depicted in Figs. 10–12, respectively.

Compared with Figs. 9 and 11, respectively, trajectories
from Figs. 10 and 12 indicate that the pursuit performance
of PAUVs is unsatisfactory, resulting in a collision involving
three PAUVs and two PAUVs, respectively. These outcomes
underscore the significance of the offline data set’s quality in
the training results of MMOTS. Enhancements in the quality
of the offline data set are correlated with advancements in
the AUVs’ policy and intelligence within the UPE game.
Furthermore, compared with Fig. 9, the trajectories in Fig. 11
indicate that the PAUVs can also successfully complete the

Fig. 11. Trajectories of the UPE game with four PAUVs and one EAUV
in a successful pursuit episode in the complex environment, using the offline
data set with optimal quality for model training.

Fig. 12. Trajectories of the UPE game with four PAUVs and one EAUV
in a failed pursuit episode in the complex environment, using the offline data
set with suboptimal quality for model training.

pursuit of EAUV and the UPE game, showcasing the excellent
robustness and generalization of proposed MMOTS.

Moreover, to prove MAIDT’s superior performance over
baselines, and the improvement on the overestimation of the
Q value, we compare it with behavior cloning (BC) [37]
and conservative Q-learning (CQL) [14], two classical offline
RL algorithms based on the supervised learning and TD,
respectively. The mean and variance of the total reward of
MAIDT and CQL algorithms across the 140 episodes are
compared in Fig. 13 with respect to the number of PAUVs
ranging from 1 to 4.
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Fig. 13. Mean and variance of total reward curves of PAUVs using CQL,
MAIDT, and BC for model training with the PAUVs number ranging from 1
to 4.

Upon analysing Fig. 13, it becomes apparent that as the
number of PAUVs increases, the mean and variance of the total
reward increases as well, with the mean rising from 17 268,
17 411, 13 947 to 30 798, 31 586, and 24 890, respectively.
Similarly, the variance also sees an increase from 1785, 1635,
1289 to 3397, 3406, and 4173, respectively. Furthermore,
it can be observed that the except in cases involving three
PAUVs, MAIDT generally has higher total reward than the
CQL, and at any cases than the BC. And similarly, except in
the cases involving four PAUVs, MAIDT typically has lower
variance than the CQL, and at any cases than the BC.

The above simulation results demonstrate the superior
performance of MMOTS. In its first stage, the MAISAC algo-
rithm effectively implements policy improvement for AUVs
and obtains the expert policy in an unstable environment,
thereby reducing training convergence difficulties and improv-
ing efficiency. Additionally, in the second stage, the MAIDT
algorithm enables AUVs to accomplish the UPE game solely
from the existing offline data sets, reducing computational
and time costs associated with environment interaction while
achieving favorable results. Furthermore, the scalability of
MMOTS is validated as they require only a small number
of AUVs for the policy improvement and offline data set
generation, allowing for extension to more quantity of PAUVs
in the UPE game.

VII. CONCLUSION

In this article, we present MMOTS, a novel training frame-
work for the IoUT-assisted UPE game in complex ocean
environments. First, we deduce the motion model and detec-
tion model of AUV and introduced the ocean current model to
characterize the ocean turbulent environment. Considering that
the UPE game is a high-dimensional NP-hard problem, we
formulate the UPE game as FMGP and design the appropriate
reward function. Subsequently, the DTDE framework-based
MAISAC is used to train the multiple AUVs to make policy

improvements and generate the offline data sets. Finally, we
utilize the data set to realize the model training via MAIDT,
enabling a larger number of AUVs to learn the expert policy
for the UPE game. Extensive experiments confirm that the
MAISAC has significant training efficiency, and the high-
quality offline data sets are crucial for MAIDT model training.
The excellent performance in the UPE games under differ-
ent conditions and environments reflects that our proposed
MMOTS framework has good practicability and extensibility.
The future work can focus on the multitarget pursuit-evasion
game while considering the intelligence level differences
between the pursuer and evaders. Furthermore, efforts are
needed to reduce the gap between the simulation environment
and the real environment to address the challenges of trans-
ferring from simulation to reality.

APPENDIX A
PROOF OF THEOREM 1

For all the actions a ∈ A and states s ∈ S, assume that the
critic network’s output is the true value Q∗(st,at) combined
with the random noise ε, which has a mean value of 0

Q(st,at) = Q∗(st,at)+ ε. (38)

Obviously, Q(st,at) is an unbiased estimate of the true value
Q∗(st,at). However, there are following inequalities:

Eε

[
max
a∈A

Q(st,at)

]
≥ max

a∈A
Q∗(st,at). (39)

Equation (39) highlights that although the critic network
provides an unbiased estimation of the true value, maximizing
it will inevitably lead to an overestimation of the actual value.
In summary, the TD algorithm computes the target as follows:

ŷt = rt + γ · max
a∈A

Q(st+1,a)

︸ ︷︷ ︸
overestimate maxa∈A Q∗(st+1,a)

. (40)

The provided equation demonstrates that the TD target,
denoted as ŷt, often exceeds the true value Q∗(st,at).
Consequently, the TD algorithm incentivizes Q(st,at) to
converge toward ŷt, leading to an overestimation of Q∗(st,at).�

APPENDIX B
PROOF OF THEOREM 2

We can write the estimate error εa as: εa = Qω−(s,a) −
maxa′ Q∗(s,a′). Considering the estimation error for different
action is independent, thus there are

P
(

max
a

εa ≤ x
)
=

n∏

a=1

P(εa ≤ x) (41)

where P(εa ≤ x) is the cumulative distribution function (CDF)
of εa, which can be concretely written as

P(εa ≤ x) =
⎧
⎨

⎩

0, if x ≤ −1
1+x

2 , if x ∈ (−1, 1)

1, if x ≥ 1.

(42)
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Therefore, we obtain the CDF for maxa εa as

P
(

max
a

εa ≤ x
)
=

n∏

a=1

P(εa ≤ x)

=

⎧
⎪⎨

⎪⎩

0, if x ≤ −1(
1+x

2

)n
, if x ∈ (−1, 1)

1, if x ≥ 1.

(43)

This gives us the CDF of the random variable maxa εa,
whose expectation can be written as an integral

E
[
max
a

εa

]
=

∫ 1

−1
xgm(x)dx (44)

where gm denotes the probability density function
(PDF), defined as the derivative of the CDF: gm(x) =
(d/dx)P(maxa εa ≤ x), so that for x ∈ [−1, 1], we have
gm(x) = (n/2)[(1+ x)/2]n−1. Finally, we can get

E
[
max
a

εa

]
=

∫ 1

−1
x

d

dx
P
(

max
a

εa ≤ x
)

dx

=
[(

1+ x

2

)n nx− 1

n+ 1

]1

−1

= n− 1

n+ 1
. (45)

�
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