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Abstract—Accurate underwater target localization is essential
for underwater exploration. To improve accuracy and efficiency
in complex underwater environments, we propose the Electric
Field Inversion-Localization Network (EFILN), a deep feedfor-
ward neural network that reconstructs position coordinates from
underwater electric field signals. By assessing whether the neural
network’s input-output values satisfy the Coulomb law, the error
between the network’s inversion solution and the equation’s exact
solution can be determined. The Adam optimizer was employed
first, followed by the L-BFGS optimizer, to progressively improve
the output precision of EFILN. A series of noise experiments
demonstrated the robustness and practical utility of the proposed
method, while small sample data experiments validated its strong
small-sample learning (SSL) capabilities. To accelerate relevant
research, we have made the codes available as open-source1.

Index Terms—Underwater target localization, Electric field
inversion, Deep learning, Neural network.

I. INTRODUCTION

IN recent years, precise and efficient underwater target
localization has become a significant challenge [1]. Most

research on electric field inversion and localization has focused
on traditional methods [2], [3]. Lee et al. [4] proposed a
real-time localization approach using a precomputed direct
current (DC) electric field template. Ji et al. [5] simulated
a moving dipole’s electromagnetic field and introduced a
Kalman filter-based localization algorithm. Yu et al. [6] used
an unscented particle filter to track ship-generated electric
fields. However, these methods suffer from lower accuracy
and limited applicability.

With advances in computer performance and forward mod-
eling, intelligent nonlinear localization methods have emerged.
Unlike traditional approaches, these methods address nonlinear
inversion without relying on initial models or Jacobian matri-
ces [7]. Algorithms like simulated annealing [8], [9], particle
swarm optimization [10], [11], and genetic algorithms [12]
have been applied to electric field inversion. However, they
often suffer from low accuracy and slow convergence with
large datasets, limiting their effectiveness.

Recently, deep learning (DL) algorithms have attracted
attention for their potential in electric signal inversion [13],
[14]. Puzyrev et al. [15] used convolutional neural networks
(CNNs) for two-dimensional (2D) inversion of controlled-
source electromagnetic data [16]. Liu et al. [17] applied

+ These authors contribute equally to this work.
1 Codes are available at https://github.com/Xiboxtg/EFILN.

CNNs for 2D inversion of electrical resistivity data, mapping
resistivity to geoelectric models. These studies highlight DL’s
potential in signal inversion, but few have explored its use in
electric signal localization.

Building on the above analysis, this paper proposes a
novel deep learning neural network, termed the Electric
Field Inversion-Localization Network (EFILN), specifically
designed for high-precision and efficient electric field inversion
localization. The proposed framework takes normalized three-
directional underwater electric field components as inputs and
outputs the corresponding position coordinates. By incorporat-
ing the physical principles of the electric field, governed by the
Coulomb law, into the loss calculation, the output of EFILN
gradually converges to the true values, achieving accurate
electric field inversion localization. The primary contributions
of this paper are summarized as follows

• To the best of our knowledge, this is the first study to
employ the deep learning model for target localization
by inverting electric field signals based on the Coulomb
law. This technique elucidates the relationship between
electric field signals and target position coordinates, fa-
cilitating precise localization.

• We employ a joint optimization approach using Adam
and L-BFGS to update the neural network parameters.
Adam rapidly reduces the loss during the initial training
phase, allowing the model to quickly reach a promising
parameter region. In the later stages, when the loss func-
tion approaches convergence, L-BFGS fine-tunes param-
eters with more accurate second-order information, fur-
ther enhancing the model’s performance. This approach
improves both training efficiency and effectiveness.

• Extensive simulation experiments demonstrate that
EFILN can achieve high-precision electric field inversion
localization in environments with varying noise inten-
sities, exhibiting strong robustness and generalizability.
Additionally, EFILN performs well even under small
sample learning (SSL) conditions.

The remainder of this paper is structured as follows. In
Section II, we provide a comprehensive description of the
system model. Section III presents the principles and details of
the proposed algorithm, followed by the experimental results
in Section IV. Finally, Section V concludes the paper and
outlines potential directions for future research. Additionally,



TABLE I
MAIN SYMBOLS AND EXPLANATIONS.

Symbols Definition
E Electric field strength

Qenc The total charge
ρ The charge density
ϵ0 Vacuum permittivity
δ The dirac delta function
V The electric potential
q The point charge
r The distance from the point charge

Ex, Ey , Ez Electric field components
(xs, ys, zs) The electric field source position

Loss The loss function
α, β, γ The weighting coefficients

bl The bias term
hk The hidden layer node
vk The visible layer node
σkl The connection weight matrix
Fa(·) The activation function
‡l The hidden layer output
D The training set
G The gradient
C The number of samples

B1, B2 The exponential decay rates
A The first moment variables
ς The second moment variables
Hk The Hessian matrices from kth iterations
I The identity matrix
sk The change in network’s parameter
gk The change in gradients
θ The neural network’s parameter

u(EX , Ey , Ez , θ) The neural network

Fig. 1. Illustration of the underwater target localization scenario.

explanations of mainly used symbols are listed in Table I.

II. SYSTEM MODEL

In this section, we provide a detailed description of the
underwater localization task and the principles of electric
field inversion. The subsequent algorithm development will
be based on these system models.

A. The Task Scenario of Underwater Localization

We consider an underwater target localization scenario, as
illustrated in Fig. 1, where a target, denoted as T , is arbitrarily

located within a 3D space defined by x, y, and z coordinates.
Its position can be inferred through the inversion of electric
field signals received by an electric field sensor network
deployed on the target. Specifically, N electrode systems
are deployed at various underwater locations, generating an
electric field by applying a voltage between the electrodes.
The target (such as an Autonomous Underwater Vehicle, or
AUV) obtains the x, y, and z components of the electric
field through onboard electric field sensors and inputs them
into the EFILN localization system. EFILN performs inversion
calculations on the input electric field signals and outputs the
position coordinates of the target. These coordinates are then
transmitted to a ground station via communication equipment,
enabling the localization of the target.

B. Principles of Electric Field Localization

In electrostatics, Gauss’s law from Maxwell’s equations
provides the relationship between the total charge enclosed
within a closed surface and the integral of the electric flux
over that surface: ∮

∂V

E · dA =
Qenc

ϵ0
, (1)

where E is the electric field strength, and dA is the differential
area element vector, whose direction is aligned with the normal
to the surface. ∂V is the closed surface in space V , Qenc is
the total charge enclosed by the surface, and ϵ0 is the vacuum
permittivity.

According to the Gauss-Ostrogradsky theorem, the electric
flux through a closed surface can be related to the volume
integral of the divergence of the electric field within that
volume: ∮

∂V

E · dA =

∫
V

(∇ ·E)dV. (2)

Meanwhile, the total charge Qenc enclosed by a closed
surface can be expressed as the volume integral of the charge
density ρ:

Qenc =

∫
V

ρdV. (3)

Substituting Equation (2) and Equation (3) into Equation
(1) yields: ∫

V

(∇ ·E)dV =
1

ϵ0

∫
V

ρdV, (4)

thus
∂Ex(x, y, z)

∂x
+

∂Ey(x, y, z)

∂y
+

∂Ez(x, y, z)

∂z
=

ρ

ϵ0
. (5)

In this paper, since the electric field generated by the
underwater electrode system can be approximated as a point
charge, Equation (5) can be simplified. For a point charge q, its
charge density ρ can be expressed using the Dirac δ function:

ρ = qδ, (6)

substituting Equation (6) into Equation (5) gives:

∇2V = −qδ

ϵ0
, (7)



Fig. 2. The overall architecture of our proposed EFILN algorithm.

where electric potential V satisfies the equation E = −∇V .
Since the electric potential V depends solely on the distance
r from the point charge, it can be assumed that the potential
exhibits spherical symmetry. In this case, Equation (7) can be
simplified to:

1

r2
d

dr

(
r2

dV

dr

)
= −qδ

ϵ0
. (8)

Based on the integral result from Gauss’s law, the final
solution for the electric potential distribution of a point charge
is obtained as:

V =
q

4πϵ0r
. (9)

Therefore, the corresponding relationship between the elec-
tric field distribution in space and the spatial coordinates is:

E(r) = −dV

dr
r̂ = − d

dr

(
q

4πϵ0r

)
r̂ =

q

4πϵ0r2
r̂, (10)

where r =
√

(x− xs)2 + (y − ys)2 + (z − zs)2, r̂ =
(x−xs

r , y−ys

r , z−zs
r ) is the unit vector from the spatial position

(x, y, z) to the electric field source position (xs, ys, zs). Equa-
tion (10) is the Coulomb law, which determines the electric
field at a specific point based on spatial coordinates. However,
inverting this equation using traditional numerical methods to
derive spatial coordinates from electric field values is chal-
lenging. In this paper, we propose a neural network that takes
electric field signals as input and outputs the corresponding
spatial coordinates. The network’s loss is calculated using
Coulomb’s law and iteratively optimized for high-precision
localization. Specific details will be discussed in the next
section.

III. ALGORITHM DESIGN

In this section, we first introduce the design of the al-
gorithm’s loss function, including how it is integrated with
Coulomb law. Based on this, the principles and implementa-
tion details of the EFILN algorithm are presented, along with
the corresponding pseudocode.

A. Loss Function Design

Assume that N electrode systems are deployed in the
studied underwater area, with their coordinates given by
(xi

s, y
i
s.z

i
s), i = 1, . . . , N . According to Equation (10), the

electric field components in the three directions at the point
(x, y, z) can be calculated as follows:

Ex =

N∑
i=1

(
Qi(x− xi

s)

4πϵ0((x− xi
s)

2 + (y − yis)
2 + (z − zis)

2)
3
2

),

(11)

Ey =

N∑
i=1

(
Qi(y − yis)

4πϵ0((x− xi
s)

2 + (y − yis)
2 + (z − zis)

2)
3
2

),

(12)

Ez =

N∑
i=1

(
Qi(z − zis)

4πϵ0((x− xi
s)

2 + (y − yis)
2 + (z − zis)

2)
3
2

),

(13)
where Qi(i = 1, . . . , N) represents the charge of the ith

electrode system.
Let u(Ex, Ey, Ez, θ) represents the neural network (NN) in

the EFILN algorithm system. This network can take electric
field signals as input and output spatial coordinates, thereby
achieving electric field inversion localization. Assuming the
dataset size is M , the loss in each of the three directions can
be defined as follows:

Lossx =
1

M

M∑
j=1

(ux(E
j
x, E

j
y, E

j
z , θ)− xj)

2, (14)

Lossy =
1

M

M∑
j=1

(uy(E
j
x, E

j
y, E

j
z , θ)− yj)

2, (15)

Lossz =
1

M

M∑
j=1

(uz(E
j
x, E

j
y, E

j
z , θ)− zj)

2, (16)



where ux, uy , and uz represent the x, y and z coordinates
of the position vector output by the NN, respectively. xj ,
yj , zj , Ej

x, Ej
y and Ej

z correspond to the spatial coordinates
and electric field information of the jth point in the dataset,
respectively. θ is the neural network’s parameter.

Based on the above analysis, our loss function is designed
as follows:

Loss = αLossx + βLossy + γLossz, (17)

where α, β and γ are the weighting coefficients for the three
components of the loss function.

B. The EFILN Algorithm

The framework of the EFILN algorithm is illustrated in Fig.
2. The challenge inherent in the localization algorithm resides
in establishing a precise correspondence between the electric
field signals and the spatial coordinates of the underwater tar-
get, culminating in the accurate derivation of said coordinates
from the physical quantities. In this study, we utilize the NN
to solve this challenge. Gaussian noise of a certain intensity is
added to the dataset generated by the forward simulation using
Coulomb law to better simulate real underwater environments.
The noisy dataset is then normalized as follows:

X̂ = (
x− xmin

xmax − xmin
,

y − ymin

ymax − ymin
,

z − zmin

zmax − zmin
), (18)

Ê = (
Ex − Exmin

Exmax − Exmin
,

Ey − Eymin

Eymax − Eymin
,

Ez − Ezmin

Ezmax − Ezmin
),

(19)
where xmin, ymin, zmin, xmax, ymax and zmax represent the
minimum and maximum values of x, y and z, respectively. The
same applies to the parameters related to the electric field.

Then, the normalized input data undergoes a linear trans-
formation through multiplication with weights and addition
of a bias term bl, yielding the layer’s output. This process is
mathematically represented as follows:

vk =
∑
k

σklhk + bl, k = 1, · · · , n; l = 1, · · · ,m, (20)

where hk denotes the hidden layer node (0 < k ≤ n), vk is
the visible layer node (0 < k ≤ m), and σkl represents the
connection weight matrix between the visible layer and the
hidden layer. The hidden layer output can be calculated as
follows:

‡l = Fa(
∑
k

σklhk + bl), (21)

where Fa(·) is the activation function. In this paper, the
activation function is chosen to be tanh.

Given its fast convergence properties, we first utilize the
Adam, an optimizer combining Momentum and RMSProp
benefits. By sampling a minibatch of J examples from the
training set {D(1), . . . ,D(J )} with corresponding targets I(V),
the gradient can be computed as

G ← 1

C
∇θ

J∑
V=1

Loss(u(D(V), θ), I(V)), (22)

Algorithm 1: The EFILN Algorithm

1 Initialize the neural network’s parameter θ.
2 Sampling points at specified intervals xstep, ystep, zstep

and applying Coulomb law to generate the
position-electric field dataset. Then normalized this
dataset.

3 for each epoch n do
4 Input the electric field information from the dataset

into the neural network and output the predicted
position coordinates (xpred, ypred, zpred).

5 Calculate the loss by Coulomb law:

Loss = αLossx + βLossy + γLossz. (26)

6 Updated parameters by Adam algorithm.
7 end
8 Update parameters by L-BFGS until the gradient

tolerance or change tolerance falls below the
specified threshold.

9 Evaluate the effects of EFILN.

where G is the gradient and C is the number of samples in a
batch.

Then, we update biased first and second moment estimate

A ← B1A+ (1− B1G), (23)

ς ← B2ς + (1− B2G)G, (24)

where B1 and B2 are the exponential decay rates for moment
estimates, and A and ς are the first and second moment
variables, respectively. Hence, it is possible to rectify bias in
both the first and second moments through the computation
of the update. The process of achieving the gradient update
entails the repetition of the aforementioned cycle.

After initial optimization with the Adam optimizer, we
switched to the L-BFGS optimizer for fine-tuning. L-BFGS is
a quasi-Newton method that updates parameters based on an
approximation of the second-order derivative (Hessian matrix).
It excels at making fine adjustments in the later training stages,
helping the model reach local optima, and is also memory
efficient. The update formula is as follows:

Hk+1 =

(
I − skg

T
k

gTk sk

)
Hk

(
I − gks

T
k

gTk sk

)
+

sks
T
k

gTk sk
, (25)

where Hk and Hk+1 represent the Hessian matrices from the
kth and (k + 1)th iterations, respectively. I is the identity
matrix, sk = θk+1 − θk denotes the change in network’s
parameter, and gk = ∇u(θk+1) − ∇u(θk) represents the
change in gradients. L-BFGS limits memory usage by storing
only the updates from the most recent iterations to construct an
approximation of the Hessian matrix. Our optimization strat-
egy, which first uses Adam followed by L-BFGS, combines the
strengths of both: Adam’s efficient exploration and L-BFGS’s
precise optimization. The pseudocode for EFILN is presented
in Algorithm 1.
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Fig. 3. Comparison of three-directional training loss under different noise levels: (a) x-direction’s training loss (b) y-direction’s training loss (c) z-direction’s
training loss.

TABLE II
PARAMETERS OF THE ENVIRONMENT AND FUSION FRAMEWORK.

Parameters Values
Permittivity of vacuum ϵ0 8.854×10−12 F/m

x, y, z-direction underwater range [10m, 110m]
Step size 0.5 m

The number of electrode systems 2
The amount of charge on the electrode ±1 C
The positions of the electrode systems (0,0,0), (0,0,100)

The number of neurons in hidden layers 16
The number of hidden layers 8
The learning rate of Adam 0.0001

The learning rate of L-BFGS 10
The history size of L-BFGS 50

The gradient tolerance of the L-BFGS 1×10−12

The maximum number of epochs 50000

TABLE III
COMPARISON OF THREE-DIRECTIONAL LOCALIZATION ACCURACY UNDER

DIFFERENT NOISE INTENSITIES.

0% 5% 10%

x 0.814m 1.013m 1.274m
y 0.908m 1.266m 0.970m
z 0.863m 0.730m 0.803m

IV. EXPERIMENTS AND RESULTS

In this section, we first present the experiment settings, in-
cluding both environmental and algorithmic parameters. Sub-
sequently, simulations under various conditions are conducted
to validate the superior performance of EFILN.

A. Experiment Settings

The experimental code in this study was executed on a
personal computer equipped with 13th Gen Intel® Core™ i7-
13650HX processor and NVIDIA GeForce RTX 4060 Laptop
GPU. The parameters can be divided into two parts: environ-
ment parameters and algorithm parameters, which are listed
in Table II for summary.

B. Experiment Results

To better simulate the complexity of underwater environ-
ments and verify robustness, Gaussian noise with intensities
of 5% and 10% was added to the dataset. The comparison

TABLE IV
LOCALIZATION ACCURACY COMPARISON ACROSS VARYING SAMPLING

INTERVALS.

0.5m 0.75m 1.0m

x 0.814m 1.102m 1.328m
y 0.908m 1.345m 1.651m
z 0.863m 1.182m 0.948m

TABLE V
COMPARISON OF DIFFERENT LOCALIZATION ALGORITHMS.

EFILN RL- glmu CSPLLS

location error 0.9% 2.0% 10.0%

of the three-directional loss under different noise conditions
and the localization accuracy are shown in Fig. 3 and Table
III, respectively. As noise increases, the dataset becomes more
disrupted, leading to higher training loss. However, even in
the presence of noise, the loss of EFILN still converges to
a very low value, and it achieves high localization accuracy,
confirming the robustness of EFILN.

Subsequently, small-sample tests were conducted to evaluate
the SSL capability of EFILN. Starting with a sampling interval
of 0.5m, the step size was gradually increased by 0.25m
during the training process, reaching a final value of 1.0m.
The experimental results are shown in Table IV. It can be
observed that as the sampling interval increases, the position-
ing accuracy of EFILN decreases slightly. This is because the
increase in step size leads to a significant reduction in the
dataset size, thus weakening the neural network’s fitting ability.
However, even with a limited number of samples, EFILN still
achieves high positioning accuracy, demonstrating the strong
SSL capability of the algorithm, which meets the positioning
accuracy requirements to some extent even with insufficient
samples.

To visualize EFILN’s high-precision localization capabil-
ity, its performance was validated using spiral, circular and
randomly selected spatial trajectories. To ensure rigorous val-
idation, the selected points for the three types of trajectories
do not overlap with any points in the dataset. The results are
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Fig. 4. Comparison of real and predicted trajectories under three different simulation paths: (a) spiral trajectory (b) circular trajectory (c) randomly selected
points.

shown in Fig. 4. The predicted trajectories closely overlap
with the real trajectories in all three cases, demonstrating the
practical utility of EFILN.

Finally, under the conditions of the simulation experiments
in this paper, the localization error of EFILN was compared
with two other localization algorithms, RL-glmu [18] and
CSPLLS [19]. The results, shown in Table V, indicate that
EFILN’s localization error is less than 50% and 10% of the
other two methods, respectively, further demonstrating the
superior performance of EFILN.

V. CONCLUSION

In this paper, we developed a deep neural network, EFILN,
based on electric field signals for high-precision underwater
localization. This network leverages the relationship between
electric field signals generated by underwater electrode sys-
tems and spatial positions to invert the electric field data
and accurately determine position coordinates. By employing
a combination of the Adam and L-BFGS optimizers, the
network’s training performance is further enhanced. Extensive
simulation experiments demonstrate that the network achieves
high localization accuracy, exhibits strong robustness, and is
well-suited for small-sample learning. Considering the com-
plexity of underwater environments, future work will focus
on validating real-world underwater field data.
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